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Prediction of Noise Radiated by a Non-Isothermal Mixing
Layer Using a Low Mach Number Approximation

F. Golanski, V. Fortune and E. Lamballais
Laboratoire d'Etudes A6rodynamiques

Batiment H
40, avenue du recteur Pineau

86022 POITIERS CEDEX, France

Abstract

The ability of an acoustic analogy to predict the sound radiated by a transitional mixing layer is
evaluated by means of Direct Numerical Simulation results. The specific case of low Mach number
flows with density variations is investigated. We consider the strategy where the acoustic source
information is based on numerical results where the sound waves has been removed in order to limit
the global computational cost of the prediction. It is shown that the low Mach number approximation
coupled to the acoustic analogy can lead to very accurate predictions for the radiated sound if the
acoustic sources in Lighthill's equation are taken into account carefully. The scaling laws of the
acoustic intensity deduced from a repeated use of the Lighthill's analogy on a wide range of Mach
numbers suggest a new interpretation about the experimental observations on the sound emission from
hot and cold jets.

1 Introduction

A better control of the noise radiated by turbulence is required in many industrial applications. The
improvement of sound prediction tools needs to study the sound generation and propagation, the
main goal of the aeroacoustics. The far field sound can be predicted with the aid of a computer, with
mainly two different numerical strategies. The first one consists in the explicit computation of the
sound on a very large computational domain by solving the compressible Navier-Stokes equations in
the context of the Direct Numerical Simulation (DNS). The direct access of the far acoustic field offered
by this approach is clearly very attractive, but the direct sound calculation is still too expensive and
problematic (boundary condition treatment) for turbulent flows in non-academic geometry. A second
point is that for low Mach number applications, even for very simple flows, the computational cost
is dramatically increased due to the numerical difficulties to consider simultaneously the turbulent
fluctuations and the very fast and low amplitude acoustic phenomena. Hence, in our knowledge,
no direct sound computation results using DNS at low Mach number are available in computational
aeroacoustics except for very simple flow geometry [15, 7, 8]. An alternative method of far-field sound
prediction is to use an acoustic analogy coupled to a near-field calculation (in the acoustic source
zone) using DNS or Large Eddy Simulation (LES). In such an hybrid method, since simulation of the
flow is necessary only in the region where the source terms are significant, the computational cost
requirement is strongly decreased. The use of acoustic analogy in this context has been validated in
previous studies [3, 7, 2, 15, 9, 8] by comparison between direct sound computation and its estimation
by solving the Lighthill's equation. A crucial question in the use of acoustic analogy concerns the
accuracy requirement for the acoustic source computation. Hence, a crude approximation of the
acoustic sources can lead to wrong sound predictions. The more straightforward method to compute
the near-field including acoustic sources is to solve directly the compressible Navier-Stokes equations
at the Mach number of the flow under study. However, for low Mach number applications, even if the
computational domain is limited to the active source region, such a compressible DNS/LES remains
very expensive. In order to avoid this drawback, a second opportunity is to perform a DNS/LES based
on governing equations where the sound waves are removed. The most common use is to consider
the incompressible Navier-Stokes equations for isothermal flows, but an equivalent removal of sound
waves can be obtained for non-isothermal applications in solving the low Mach number approximate
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Figure 1: The temporal mixing layer flow configuration.

Navier-Stokes equations. Since the sound is removed from such DNS/LES results, it must be restored

in the region of interest using the acoustic analogy. In this paper, we want to evaluate this strategy of

sound removal/restoration in the context of a iransitional non-isothermal flow. We first concentrate
our attention on the acoustic source computation and their treatment in the acoustic analogy stage.
Finally, scaling laws of acoustic intensity with the Mach number are discussed by varying the Mach
number in the frame of the acoustic analogy.

2 Flow configuration

In this work, we consider the temporal development of a two-dimensional mixing layer between two
streams of velocity, temperature and density noted respectively (U*, Tj*, p*) and (Ul, T, p*) in a
rectangular domain of dimensions L* x L* (see figure 1 for more details about the flow and domain
geometries). Note that throughout this paper, dimensional quantities are indicated by a superscript *

The flow is assumed to be periodic in the streamwise direction x* while free-slip boundary conditions
are imposed at y* = +L'/2. The initial pressure p* is assumed to be constant. The initial mean
velocity field is given by the following hyperbolic-tangent profile

(u,) (y,) =U1* + el* + u1* - ELI 2ynh2 + 2-tanh (-•) (1)

where 5*, is the initial vorticity thickness while the operator (.) indicates an average over the streamwise

direction x*. Uj" and U2 are deterinined in order to verify the condition U* = 0 where U* is the
convection velocity of the large scale structures [1] with

U V'TIU + V'-U 1  (2)

The initial temperature is deduced using the Crocco-Buseman relation

T* (y*) 1 [-(u*)2(y*) - UrU.2 + (u*) (y*)(Ul* + U)]
+ (I*- •)u* (y*) + T*U1 - TI*U2

±u - v--- + T• u - U2 (3)

In order to destabilize the flow, an incompressible disturbance field (*, 'b*) is added to the mean

velocity. The vertical velocity perturbation is composed of a fundamental and two sub-harmonic

disturbances such as

* (X*,y*) =A*e\'() [cos 8r*-- * + cost 4X -+ cos 27r (4)
L *\~ 8 \L* 16 LX)

with A* = 0.025 (U* - Us), and a = 0.05. Since this set of initial conditions corresponds exactly to
the one used in [7], a detailed comparison with one simulation referenced in this previous study will
be given in the section 7.
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3 Conservation laws

We consider a perfect gas flow governed by the following equations written in nondimensional form

Op Opui 0 (5)
Tt ax,

9pui Opuiuj Op 1 Tijot + o;jo z R7 +z- - (6)
Ot xj 9x Re caxj()

OE O(p + E)uj _ 1 Ouirij 1 0 2 T
at Oxj Re Oxj M 2RePr(y - 1) Ox (7)

pT (8)
p = M

2

in a Cartesian coordinates xi = (x, y, z) where ui = (u, v, w) are the velocity components, p and p
being respectively the pressure and density fields. All variables are nondimension'alized using 5,* as
reference length, U• - U2 as reference velocity, p* as reference density and T2 as reference temperature.
Here, -y = c-/c, is the ratio of specific heats while the universal gas constant is noted r* - cc* *.
The three fundamental nondimensional parameters are the Reynolds number Re -P (U - 2 ) ,/j ,
the Prandtl number Pr = p*cp/k* and the Mach number M = (U* - U2)/.-yr*T2, where both the
dynamic viscosity p* and the thermal conductivity k* are assumed to be constant. The viscous stress
tensor is given by

Oui O+u 2 OUk (9)
• = +Ox- 3 Oxk

while the total energy per unit volume is expressed by

p 1E = + -Puiui. (10)
- -1

These equations, usually refereed as the compressible Navier-Stokes equations, allow to describe the
motion of a perfect gas in a wide range of Mach numbers by considering simultaneously the vortical,
entropic and acoustic motions and their eventual coupling.

4 Low Mach number approximation

In many applications, the flow occurs at low speeds. If the fluid velocity is everywhere small compared
to the sound speed, it can be clearly an advantage to exploit this feature in order to derive a set of
equations easier to solve numerically. The main gain of such approach concerns the computational
cost which can be strongly decreased in assuming that the Mach number M is low. More precisely,
when the full compressible Navier-Stokes equations are considered, the presence of acoustic waves in
the flow impose the use of very small time steps due to the numerical stability of explicit method
through the CFL condition. Hence, if the same physical domain and spatial resolution are used, the
computational cost of a compressible DNS is in first approximation proportional to M-1. For very
low Mach number flows, such a scaling of the computational cost is clearly a drawback, while being
mainly conditioned by acoustic phenomena of negligible effects on the flow dynamics. In order to avoid
this limitation, it is then very attractive to consider a simplified problem where the acoustic modes
are decoupled from the vorticity and entropy modes. The set of equations governing the vorticity
and entropy modes can be established by applying a low Mach number approximation to equations
(5)-(8). Formally, these simplified equations are derived in introducing a small parameter

= M(11)

which is used to expand p, ui and T as

p= p(O)+p( 1)+... (12)
S= + + +... (13)

T = T(-)eT('1)+... (14)
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while the state law (8) impose an expansion for p such as

p = (0 + p(O) +... (15)
6

Note that in (15), p(O) and p(M) can be interpreted as nondinmensional pressures using respectively
p~r*T2 and p*(U2 - U*), so that p(O) is currently called the thermodynamic pressure while p(l) is
refereed as the dynamic pressure. Substituting the expansions (12)-(15) into equations (5)-(8) leads
to the following system at the lowest. order in E (see [14, 4] for more details)

p(0) p(O)OuC•°i )
+ = 0 (16)t Oxi

4xP -- 0 (17)

(0) 1 0 2T(0 )(
) j = RePrT(°) Ox?1

p(0) p(-)T(°) (19)

Since we consider here an open physical domain, the spatially uniform thermodynamic pressure p(O)
is also assumed to be constant in time and fixed to its value at the boundaries y = -Ly/2 with

(0)
p(O) = 1. In order to close the problem, an additional equation describing the velocity field u*° must
be obtained by considering the equation (6) at the zero-order in E which1 yields the equation

(O)io) &p(O)u(O) (0) .9p(1) +) T)0('9t)l° + x i = x + 01(20)

The equations (16), (18), (19) and (20) form a closed system corresponding to a simplification of
the Navier-Stokes equations in the frame of the low Mach number approximation. It is important
to emphasize that these equations are only asymptotically valid for vanishing Mach number flows,
but without any hypothesis about the density variations in space or during the time. Naturally, the
assumption p(O) = const leads to the conventional incompressible Navier-Stokes equations

Ou) °u (uj(O) OP 1 uO-) (21

S+ + 3 &-Ot+ Ox2  Ox1  Re Ox2 21

-- 0 (22)
Dxi

with P = p(l)/p(O). An important feature of the low Mach number-approximation is that acoustic
waves are removed from the derived equations [14]. Hence, this approximation can be viewed as
an acoustic filtering procedure which is intrinsic to the derived equations. For low Mach number
applications, such a removal of sound waves preserves the flow dynamics in allowing the use of large
time step in simulations. In exchange, the ability offered by compressible Navier-Stokes equations to
give directly acoustic predictions is loss.

5 Acoustic analogy

5.1 Lighthill's equation

Starting with the equations (5) and (6), the Lighthill's approach [13] consists in deriving a simplified
wave equation for p such as

02P 2 02P t92 T'"t c - (23)at2 19X 2 OXj
where the Lighthill's tensor

T-j =P- coo 5ij -+(-CT6 j (24)

term i term 2 terni 3
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is decomposed here into three terms which are interpreted as the "sources" of the sound waves. The
value of coo is the expected nondimensional sound speed in the region where the acoustic waves are
considered. Assuming that the source terms are known, the resolution of equation (23) yields a
prediction of the acoustic waves corresponding to a given distribution of Ti7j. Moreover, due to the
simplicity of the propagation operator in the left hand side of equation (23), the solution can be
expressed analytically with the aid of the Green function formalism. Note that such an approach,
refereed as the acoustic analogy, can give reliable information about the sound only in the regions
where Tij 0, typically in the far acoustic field zone (see [13] 'for more details).

5.2 Source term treatment

The treatment of the source terms is the key element in the quality of the sound prediction given by the
acoustic analogy. For free shear flows, the viscous term 3 can be neglected, even for the low Reynolds
number cases considered here [8]. Consequently, this term will no longer be considered in this paper.
The term 2 is also frequently omitted by invoking a compensating effect between the pressure and
density fluctuations leading to a quasi-constant value for p - c2p. In fact, such a behaviour can be
justified only for isothermal flows where the effects of heat conduction are negligible. More precisely,
this last assumption implies that the flow evolution is isentropic with

dp 1ldp
dt - c2 dt (25)

where c is a nondimensional local sound speed with c2 = TIM 2 . If in addition the flow evolution is
quasi-isothermal, it is reasonable to assume that c z c,, in the isentropic relation (25) which takes
then the simplified form

d 2 \
(p- cP) ;0 (26)

Assuming that pressure and temperature fields are simultaneously uniform at one inistant, it can be
deduced from this last equation that the relation p - cop ; const is verified at each time everywhere
in the flow. Consequently, in previous works using acoustic analogy, the attention was concentrated
mainly on the term 1 assumed to be the dominant contribution in Tij. Naturally, the assumption
c • c,, is not valid in a non-isothermal case and term 2 can no longer be omitted. In a previous work
[8], the importance of this term was demonstrated for a non-isothermal flow by analysing DNS results
including the direct computation of sound. In the same study; the very small effects of the term 2
on sound emission were also confirmed for an isothermal flow in agreement with the considerations
mentioned above.

5.3 Lighthill's equation and low Mach number approximation

In this work, we are interested in the use of an acoustic analogy for low Mach number flows. For
isothermal flows, the common use is to determine Tij from an incompressible DNS solving the equations

(21),(22) by considering only the term 1 in (24) with Tij 2 p(°)U0°)u°). The knowledge of Tij allows
then to solve in a second step the equation (23) by choosing a relevant value for c,,. The natural
choice is c,, = VITý where T and M are respectively the nondimensional temperature and Mach
number corresponding to the flow that is under study. In this work, we propose to generalize such an
approach to the case of non-isothermal flows (with large density variations) by using the formalism
of the low Mach number approximation. For such a purpose, it is worth to substitute the expansions
(12)-(15) into the definition (24) in order to evaluate a priori the contribution of each flow variable
to the lowest orders in -. Before doing this, it is important to express the value of c. as a function of
the flow parameters with

2 T_
0 - M 2  (27)

7- (28)
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where Too is the nondimensional constant temperature where the sound is predicted. Thus, the
expansion of Tj truncated to zero-order in E yields the following expression

S-()± _ .Too((0) 6ij+ (1) _ 7Top(1) 6 ij+... (29)

term 1 term 2a term 2b

term 2

This relation suggests clearly how results obtained in the frame of the low Mach number approximation
must be used in order to estimate TiJ. Thus, it can be observed that only the terms 1 and 2a can be
deduced from such results due to the presence of p0) in term 2b which is not considered in equations
(16),(18),(19) and (20). The non-isothermal character of the flow can however be partially taken into
account through the inhomogeneities of p(O) in term 2a. An important remark is that the term 2a
is the lowest order term in e. Consequently, it can be expected that this term become dominant for
very low Mach number flows even if the density variations p(O) are moderate. The contribution of the
terms 2a and 2b can be studied a priori by considering the relation (25) at the two lowest orders in
E. Thus, it is easy to show that isentropic condition implies

dp(-' = 0 (30)

dt

for the terms in E-- and
d (p(i) _ yT(O)p(1)) = 0 (31)dt

at zero-order. In the isothermal case where p(O) and TM°) are strictly constant (contrary to the com-
pressible variables p and T which conserve small variations), the term 2a automatically vanishes while
the condition (31) with T(°) = T.. shows that the term 2b is conserved following the motion. All these
points will be discussed using the results presented in the next sections.

To summarize, the present strategy of acoustic prediction in the frame of low Mach number ap-
proximation consists first in the resolution of equations (16), (18), (19) and (20) by assuming E -- 0
followed by the application of acoustic analogy by considering a finite value for E in equations (28),
(23) and (29), E being fixed in regards to the real Mach number of the application. Naturally, the
validity range of e has an upper limit which is conditioned by the quality of the assumption that
compressibility effects on the real flow dynamics can be neglected.

5.4 Formulation of Lighthill's equation in temporal configuration

The present use of a periodic condition in the streamwise direction allows to consider a simplified flow
configuration where the far acoustic field is easily accessible. Hence, due to the unlimited extent of the
acoustic source in the x-direction, there is no far field in this direction and the acoustic wave propaga-
tion occurs mainly in the y-direction. More precisely, using the average operator (. = (1/Lx) foL (.)dx,
it is possible to show that outside the active region of the flow, the mean part (q) of any flow variable
€ travels 'With the local speed of sound co, as a non-decaying plane wave, formally

(¢) = (0) (y - c0t), (32)

while the disturbance 0' = (¢) - suffers a 1/1y- decay [11]. Note that the relation (32) can be verified
even if the disturbance €' is not negligible. Consequently, it can be stated that the far acoustic field
is only composed of plane acoustic waves which are accessible by considering the mean quantities (0)
at a distance [yj from the shear zone where the condition (32) is verified. In practice, previous works
[11, 7] have shown that this critical distance is moderate. For the present study, the mean acoustic
quantities are predicted at the location y = -30, at a distance from the mixing layer center which
is considered to be large enough to verify the condition (32) and consequently to have access to the
far-field data.

Denoting the acoustic density as the density deviation from its ambient value in the prediction
region, it is easy to express a specific formulation of Lighthill's equation verified by the corresponding
mean quantity (p - p.)

02 C2 "02
-5-2(P - P.) - c.--y (P - P.) <(Tay) (33)
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with
(TPt - <n,) + (p - coop) (34)

where the viscous term is omitted for clarity. In this paper, we will consider only this simplified form of
the Lighthill's equation where only the knowledge of contributions on mean Lighthill's tensor compo-
nent (Tyy) is required. Using the Green's function formalism and after some analytical developments
[6], the solution to equation (33) can be written as

(P- P)(yt 0 T (T. r1 Y t . dy'

(P -Poo)l
.1 f_+5OO (, Ity--.', 1-

+ C (TVy- 2T Y dy' + -(P1 + P2) -PO (35)

where (p - p>)1 and (p - PA)2 are the contributions of the source terms (Tyy), and (Tyy) 2 on the
solution. The constant factor (1 ± P2) -. po in (35) is due to boundary terms at y = :-oo associated
to mean density gradient across the mixing layer (see [6] for more details). By convention, this factor
is included in (p - P•)2 in order to bring together the specific non-isothermal contributions. Finally,
note that the spatial integration required in the solution (35) was numerically performed in this study
by neglecting the contribution of the source terms outside of the y-range of the computational domain
[-ny /2, +ny/2].

6 Numerical methodology

The evolution equations numerically solved are

ap(o)
--- fp (36)

1Op(OQu0) Op(1=t -- +Fu, (37)

Ot Oxi

with

F -- OO° p(0) 1 92T(°)
Ox3  RePrT(°) Oxa

F -i -9 (0 O)u(O) (O)() (39)

Note that in this work, following the technique proposed by [14], we solve a specific form of the density

equation (36) which is a combination of the equations (16) and (19). The equations (36) and (37) are
integrated in time using a Runge-Kutta scheme except for the pressure term in (37) which requires a
specific treatment. More precisely, the discrete integration of these equations on a sub-time step from
tk to tk+1 gives

(O) u k+1-- (p(O))k

----) ((O akF• k + kF k-1 (40)
At

(0)p(O)u•) k+1 -- (pO)•))k 0fi(1)

+ -- kFk +/3kFu! (41)At Oxi U

with
(1) = - f+ p(1)dt (42)AtJ,
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The present Runge-Kutta scheme having four sub-time step, we have k = 1,2, 3, 4 with tl = t, and
t5 = t,,+, At = tn+1 - t,. being the full time step. The coefficients ak and 83k are chosen to satisfy
a fourth-order accuracy in time. Since PO) is not known a priori, the equation (41) is fractioned into
two steps

At (ptkFo)k + 13kF~i (43)
At

(p(O) )kO) -k- _0P(1' 
(4At cx(

Taking the divergence of (44) and using the continuity equation (16), we can obtain a Poisson equation
for •O1)

1(9 (P(O)U(O)* a (O)u))k+)Ox OI - -t 1, ) (45)

_ 1 p(O)uO) + k+1)(46)

The computation of the density time derivative on the right hand side of the equation (46) can be
performed using various explicit or implicit-approximations [4]. In preliminary calculations, we tested
several low- and high-order temporal schemes and we found that the somewhat crude approximation
deduced from equation (36)

('--)- F1 = k + O(At) (47)

is the more stable one, allowing the use of large time step while giving reliable results (see following
sections).

For spatial discretization, all the spatial derivatives in equations (38),(39) and (46) are computed
with the aid of centered compact finite difference schemes of sixth-order accuracy [10]. The computa-
tional grid is regular in a non-staggered configuration.

7 Results

7.1 Simulation parameters

The size of the computational domain (L,, Ly) = (30.7,60), the ratio of densities P2/pI = 2 and the
fundamental parameters (Re = 400, Pr = 0.75) correspond exactly to a computational configuration
referenced in the compressible study [7], as well as the number of grid points in the x-direction with
n. = 256. Contrary to this previous work, we do not use here a stretched grid in thfe y-direction.
Since we want to ensure a comparable precision of present results with respect to the data of [7], the
resolution in the y-direction was chosen in order to correspond to the resolution used in [7] near y = 0
(where the concentration of grid points is maximal) with Ay = 0.12 which leads to the choice ny = 501.
Finally, note that the isothermal case was also considered but will not be presented in details in this
paper because all conclusions given in the following about the agreement between present results and
previous data of [7] are preserved when P2/Pl = 1. Isothermal results will only be shortly considered
in the section 7.4 in order to distinguish the isothermal and non-isothermal acoustic emission in terms
of scaling laws.

7.2 Instantaneous field analysis

The validity of an acoustic prediction in the frame of low Mach number approximation is naturally
conditioned by the validity of the assumption that compressibility effects are negligible on the flow
dynamics. In order to verify this hypothesis, visualizations of vorticity and density fields are shown on
figures (2) and (3) where present data w•°) and p(O) are compared with their compressible counterpart
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wz and p obtained by [7] at M - 0.2. Only the near fields are presented, in the region where source
terms are a priori significant. The five instants presented allow to observe the formation of four Kelvin-
Helmoltz vortices (t = 24) followed by two successive pairings (t 64 and t = 152). This sequence of
transition events is in qualitative agreement with previous DNS results [12]. The remarkable agreement
obtained at each time between present results and the compressible data of [7] can be considered as
a convincing validation of the numerical methodology used here. It confirms also that at least up
to Ml = 0.2, the compressibility do not play a significant part in the flow evolution. Note that the,
generation of counter-rotating vorticity, an important feature of the transition mechanisms in non-
isothermal mixing layers, is very well recovered here, confirming the ability of our numerical code to
describe accurately the variable density effects. Since the near fields seem to be well computed, it is
reasonable to hope that present data can be used to deduce the correct source terms leading to an
accurate prediction of sound. This question will be addressed in the next section.

r 10

0 30A0 30 300 300 30

t =24 t=---64 t=---82 t ---152 t =182

Figure 2: Comparison of vorticity. isocontours obtained from present low Mach number approximate
DNS (w() bottom) and from a compressible DNS of [7] at M = 0.2 (wz, top). The contour lines are

plotted at intervals of •:0.01, the dashed lines indicate positive contours (counter-rotating vorticity).

-10

-10

0 30 0 30 0 30 0 300 30

t =24 tl= 64 t =82 t =152 t = 182

Figure 3: Comparison of density isocontours obtained from present low Mach number approximate
DNS (p(0), bottom) and from a compressible DNS of [7] at M = 0.2 (p, top). The contour lines are
plotted at intervals of 0.1 from 0.5 to 1.
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7.3 Source term analysis

Using the Lighthill's analogy in its temporal formulation for a similar mixing layer, a remarkable
agreement was found by [7] between the direct computed sound and its estimation from the solution
(35). However, it was emphasized in this study that such an agreement was possible in non-isothermal
cases only when the temperature inhomogeneities were taken into account accurately in the two source
terms (Tyyl) and (TyY) 2 in (35). Note that since these previous results are fully compressible, the
determination of the Lighthill's tensor was obvious. For present results, the compressible component
of the motion being not computed, the situation is more delicate. Hence, it is clear that a simple
substitution of p by p(O), ui by u•°) and p by p(l) in the definition (24) of Tij do not lead to a relevant
prediction of sound. This point has already been mentioned in the section 5.3 where the development
(29) of Tij in e shows that for the term 2, at zero-order in e, p0() is linked to p(1) instead of p(0), the
contribution of p(O) being "amplified" by a factor 1/E compared to the other contributions.

Since p(1) is not computed in present low Mach number approximate DNS, we propose fiere to
neglect the term 2b in the approximation (29) of Tij. Note that this assumption can not be justified
using a simple argument about the low value of the Mach number because the order in E of term 2b
is the same than for the term 1. The solution obtained from (35) using this assumption is however
shown on figure 4 where the time evolution of the mean acoustic density (p - p2) at y = -Ly/2 is
plotted. At this location, the ambient quantities are p, = P2, coo = c2 and T, = T2 . The time
scale is shifted by td = t - Ly/(2c2 ), this correction corresponding to the time necessary for a wave
to travel from y = 0 to y = -Ly/2 at the local sound speed c2 = v/'T2/M. On the same figure,
the separated contributions of term 1 and term 2 are shown as well. The corresponding estimations
of (p - P2) using the fully compressible data already performed by [7] at M = 0.2 are also given
for comparison. Physically, the time variation of the acoustic density (p - P2) is due to the sound
emission from the shear layer. More precisely, it has been shown by [7] that mainly three acoustic
waves are generated during the transition of a 2D temporal mixing layer, each sound emission being
consecutively generated by the roll-up and the two successive pairings of the large scale structures. It
was also found by the same authors that the second pairing was the noisiest event of the transition in
the 2D case. Despite the present approximations on Tij, it is worth to observe that a good agreement
is found between the present prediction of acoustic data aid their compressible counterpart of [7].
Small though it is, the main difference between these data concerns the term 2. This behaviour is
probably related to the lack of the term 2b in the Lighthill's tensor Tij but could also be attributed
to a weak Mach number effect on the flow dynamics (to our knowledge, no compressible data about
this flow are available for Al < 0.2). As a first conclusion, we consider here that the low Mach number
approximation coupled to the Lighthill's analogy can give a good prediction of the sound radiated by
the present non-isothermal flow with a computational cost considerably reduced compared to the fully
compressible case. It is interesting to note that when compressible data are used as source terms, the
acoustic analogy prediction is valid only for the Mach number considered in the DNS. A prediction at
a different Mach number needs to perform again-the simulation even if the change of Mach number
has very weak effects on the dynamics. The advantage of the low Mach number approximation is
that only one simulation is necessary to compute the source terms from which it is possible to deduce
acoustic predictions for various Mach numbers. This attractive feature will be exploited in the next
section in order to establish numerically the scaling laws followed by the acoustic wave intensities.

7.4 Scaling laws deduced from acoustic analogy

A common method to evaluate the sound level is to consider the acoustic intensity lac at a given
location in the far-field region. In present temporal configuration, this quantity corresponds to the
product of the mean acoustic velocity and pressure Iac = (p- P2) (v) evaluated at y = -Ly/2. In
the acoustic far field, using the assumption that the plane wave propagation in the y-direction is well
described by the linearized Euler equations, it is easy to show that the temporal variation of Ia, is
directly related to the temporal variation of the acoustic density (p - P2) with Iac = -c2 ( _ )2 /P2
Note that this relation, very well verified by [7, 6], allows to deduce I,,, from the only knowledge of
(p - p2). In order to study the dependance of I, with the Mach number, it is interesting to perform
an acoustic analogy for a wide range of Mach numbers using the same source terms deduced from the
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Figure 4: Time evolution of the acoustic density predicted from acoustic analogy applied to compress-
ible DNS results [8] (- ) and to present Mach number approximate results ( ).

simulation presented previously. This procedure has been followed in solving 41 times the equation (33)
for Mach numbers reparted on the interval [0.0001, 0.75] with a logarithmic distribution. For each given
Mach number, the maximum of bac has been determined from the time history of Iac and reported
to a diagram (Iciax, M) which is presented on figure 5. The corresponding data deduced from the
direct computation of [7] at three different Mach numbers are also given for comparison. Note that
for this figure, the acoustic intensity data are nondimentionalized using the local quantities P2 and c2
(instead of U1 - U2 ) in accordance with the common use. Naturally, the excellent agreement of present
acoustic predictions with the data of [7] can be observed again on this figure where the isothermal case
is also presented. For this last case where P2/Pi = 1, the scaling of the maximum acoustic intensity
is very well defined over the total range of the Mach number considered with ]Iacm•.a c P2c MC. A
simple dimensional analysis of the solution (35), assuming the far field relation a/ay ý. (1/c 2 )a/lt
and j = p((o)~$ -)u- allows to find easily this scaling without the accurate computation of the exact
source term 1.

In the non-isothermal case, the situation is clearly less simple. Since the balance between the
terms 1 and 2a depends on the Mach number, a dimensional analysis can not lead to a single exponent
for the scaling .of the acoustic intensity. This view is confirmed by the observation of the figure 5
where the acoustic intensity for p2/pl -= 2 shows a more sophisticated scaling. For very low Mach
numbers, the scaling exponent of the acoustic intensity with the Mach number is around 2. Such a
behaviour can be predicted a priori in assuming that the Lighthill's tensor can be approximated by

ij ;; (1/6)(p(°) - 7Top(i)) 6ij which leads to hIac.max Cx p2c3 M 2 . Naturally, the approximation of Tij
is valid only if E < 1, that is for very low Mach number. For M > 0.05, the explicit solving of (33)
shows a clear change in the scaling of Iac, with the approximate scaling law Iadimax oc p2c3 M4 in the--
range 0.02 < M < 0.2. For M > 0.2, a new change of scaling occurs, but no well defined power law
can be identified. Note that for M > 0.5, the compressible effects on the flow dynamics become non-
negligible, and present acoustic predictions can not be considered as physically valid. Nevertheless,
acoustic results are considered here up to M = 0.75 in order to better identify the change in the
scaling of Ia,.

A last comment about the figure 5 concerns the comparison between the isothermal and non-
isothermal cases. It is interesting to note that the two different scalings of 1a, in isothermal and
non-isothermal cases can give a qualitative interpretation of the experimental observations on the
sound emissions from cold and hot jets [5]. Hence, for low Mach number, the source of the sound can
be essentially attributed to the term 2 and consequently the non-isothermal case is clearly the noisiest
one, in agreement with experimental trends for hot and cold jets. However, due to the large value of the
scaling exponent in the isothermal case, the increase of the Mach number can lead to a situation where
the sound level is stronger in the isothermal case. In cold and hot jet experiments, such an inversion
was found to occur around the critical value M ; 0.7. In present results, the corresponding critical
value is M • 0.6, which is outside of the validity range of Mach numbers. Despite this reservation, it is
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Figure 5: Maximum acoustic intensity versus-the Mach number M. Isothermal case P2/P1 = 1: present
results - - - -, direct computed results of [7] x. Non-isothermal case P2/PI = 2: present results ,

direct computed results of [7] +.

worth to observe that this inversion, resulting from a combination between the temperature and Mach
number effects, can be understood without the presence of any compressible effects on turbulence, the
compressibility being totally missing in present acoustic sources.
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